Main Article Content

Abstract

This study predicts the factors that influence life expectancy in East Java, Indonesia. In particular, this study compares the prediction results between the linear regression model and the Bayesian Model Averaging (BMA). The study used a 2015 data set from the Central Bureau of Statistics (BPS) of the province of East Java.The results of data exploration show that the life expectancy in East Java is 70.68 years, the Bondowoso regency is the region with the lowest life expectancy at 65.73 years and the city of Surabaya is the area with the highest life expectancy value in East Java, which is 73.85 years.The results of the inference study indicate that the factors that are expected to affect life expectancy in East Java are the infant mortality rate and the illiteracy rate of the population aged 10 and over.The results of the comparison between the BMA and the regression show that the BMA is a better model for predicting the factors that affect life expectancy in East Java than the regression model because the BMA model can estimate the parameters more efficiently by estimating the model parameters based on the standard error value.

Keywords

Bayesian Model Averaging Life Expectancy Regression

Article Details

How to Cite
Al Azies, H., & Vivi Mentari Dewi. (2021). Factors Affecting Life Expectancy in East Java: Predictions with A Bayesian Model Averaging Approach. Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, 5(2), 283-295. https://doi.org/10.36574/jpp.v5i2.214

References

  1. Aidi. M. N.. Sumertajaya. I. M.. & Yusuf. L. M. (2014). Geographical Weighted Regression with Kernel Gaussian Weighted Function in Life Expectancy Rate (Case Study: Life Expectancy Rate of Regencies / Cities in East Java Province). International Journal of Statistics and Applications. Vol. 4 No. 3. 2014. pp. 144-152.
  2. Badan Pusat Statistik. (2015a). Angka Harapan Hidup Menurut Provinsi. Jakarta: Badan Pusat Statistik.
  3. Badan Pusat Statistik Provinsi Jawa Timur. (2015b). Angka Harapan Hidup Menurut Kabupaten/Kota. Surabaya: Badan Pusat Statistik Provinsi Jawa Timur.
  4. Budiantara. I. N.. Sugiantari. A.. Ratnasari. V.. Ratna. M.. & Zain. I. (2014). Analysis of Factors that Influence Life Expectancy in East Java (Indonesia) Using Semiparametric Spline Regression Approach. International Jornal of Basic & Applied Sciences. 14(2).
  5. Daoud. J. (2017). Multicollinearity and Regression Analysis. Journal of Physics: Conf. Series . 949.
  6. Ho. J.. & Hendi. A.S. (2018). Recent trends in life expectancy across high income countries: retrospective observational study. The BMJ. 362.
  7. Hoeting. J. A.. Madigan. D.. Raftery. A. E.. & Volinsky. C. T. (1999). Bayesian Model Averaging: A Tutorial (with Discussion). Statistical Science . 382-417.
  8. Hustianda. V. F. (2012). Perbandingan Bayesian Model Averaging dan Regresi Linear Berganda dalam Memprediksi Faktor-Faktor yang Mempengaruhi Jumlah Kematian Bayi di Jawa Timur. Institut Teknologi Sepuluh Nopember. Statistika. Surabaya: Institut Teknologi Sepuluh Nopember.
  9. Jeffreys. H. (1961). Theory of Probability. 3rd ed. Oxford: Press Oxford.
  10. King. M.. & Harris. D. (1995). The application of the durbin-watson test to the dynamic regression model under normal and non-normal errors. Econometric Reviews . 4 (14). 487-510.
  11. Klein. A. G.. Gerhard. C.. Büchner. R. D.. Diestel. S.. & Schermelleh-Engel. K. (2016). The detection of heteroscedasticity in regression models for psychological data. Psychological Test and Assessment Modeling . 4 (58). 567–592.
  12. Kuswanto. H.. & Sari. M. R. (2013). Bayesian model averaging with Markov chain monte Carlo for calibrating temperature forecast from combination of time series models. Journal of Mathematics and Statistics. 9(4). 349.
  13. Liang. F. M.. Troung. Y.. & Wong. W. H. (2001). Automatic Bayesian Model Averaging for Linear Regression and Applications in Bayesian Curve Fitting. Statistical Science . 4 (11). 1005-1029.
  14. Madigan. D.. & Raftery. A. E. (1994). Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window. Journal of the American Statistical Association . 89 (428). 1535-1546.
  15. Miller. B. d. (2005). Lifespan and Healthspan: Past. Present. and Promise. National Library of Medicine .
  16. Montgomery. J.. & Nyhan. B. (2010). Bayesian Model Averaging: Theoretical Developments and Practical Applications. Political Analysis . 245-270.
  17. Nazhifah. N. (2017). Modeling Of Life Expectancy At Birth In East Java 2015 With Multiple Linear Regression. Institut Teknologi Sepuluh Nopember. Statistika. Surabaya: Institut Teknologi Sepuluh Nopember.
  18. Nisa'. K.. & Budiantara. I. N. (2020). Modeling East Java Indonesia Life Expectancy Using Semiparametric Regression Mixed Spline Truncated And Fourier Series. Media Statistika. 13(2). 149-160.
  19. Othman. A.. & Gloaguen. R. (2013). River Courses Affected by Landslides and Implications for Hazard Assessment: A High Resolution Remote Sensing Case Study in NE Iraq–W Iran. Remote Sensing . 5 (3). 1024–1044.
  20. Raftery. A. E.. Madigan. D.. & Hoeting. J. (1997). Bayesian Model Averaging for Linear Regression Models. Journal of the American StatisticaL Association . 92.
  21. Sarstedt. M.. & Mooi. E. (2014). Regression Analysis. In: A Concise Guide to Market Research. Springer Texts in Business and Economics. Berlin: Springer.
  22. Thadewald. T.. & Büning. H. (2007). Jarque–Bera Test and its Competitors for Testing Normality – A Power Comparison. Journal of Applied Statistics . 1 (34). 87-105.
  23. Viallefont. V.. Raftery. A.. & Richardson. S. (2001). Variable Selection and Bayesian Model Averaging in Case- Control Studies. Statistical in Medicine. . 3215-3230.

DB Error: Unknown column 'Array' in 'where clause'